1 Force \mathbf{F}_{1} is $\binom{6}{13} \mathrm{~N}$ and force \mathbf{F}_{2} is $\binom{3}{5}$, where $\left(\begin{array}{l} \\ 0\end{array}\right)$ and $\binom{0}{1}$ are vectors east and north respectively.
(i) Calculate the magnitude of \mathbf{F}_{1}, correct to three significant figures.
(ii) Calculate the direction of the force $\mathbf{F}_{1}-\mathbf{F}_{2}$ as a bearing.

Force \mathbf{F}_{2} is the resultant of all the forces acting on an object of mass 5 kg .
(iii) Calculate the acceleration of the object and the change in its velocity after 10 seconds.

2 The speed of a 100 metre runner in $\mathrm{m} \mathrm{s}^{-1}$ is measured electronically every 4 seconds.
The measurements are plotted as points on the speed-time graph in Fig. 6. The vertical dotted line is drawn through the runner's finishing time.

Fig. 6 also illustrates Model P in which the points are joined by straight lines.

Fig. 6
(i) Use Model P to estimate
(A) the distance the runner has gone at the end of 12 seconds,
(B) how long the runner took to complete 100 m .

A mathematician proposes Model Q in which the runner's speed, $v \mathrm{~ms}^{-1}$ at time $t \mathrm{~s}$, is given by

$$
v=\frac{5}{2} t-\frac{1}{8} t^{2} .
$$

(ii) Verify that Model Q gives the correct speed for $t=8$.
(iii) Use Model Q to estimate the distance the runner has gone at the end of 12 seconds.
(iv) The runner was timed at 11.35 seconds for the 100 m .

Which model places the runner closer to the finishing line at this time?

In this question take g as $10 \mathrm{~m} \mathrm{~s}^{-2}$.
A small ball is released from rest. It falls for 2 seconds and is then brought to rest over the next 5 seconds. This motion is modelled in the speed-time graph Fig. 6.

Fig. 6
For this model,
(i) calculate the distance fallen from $t=0$ to $t=7$,
(ii) find the acceleration of the ball from $t=2$ to $t=6$, specifying the direction,
(iii) obtain an expression in terms of t for the downward speed of the ball from $t=2$ to $t=6$,
(iv) state the assumption that has been made about the resistance to motion from $t=0$ to $t=2$.

The part of the motion from $t=2$ to $t=7$ is now modelled by $v=-\frac{3}{2} t^{2}+\frac{19}{2} t+7$.
(v) Verify that v agrees with the values given in Fig, 6 at $t=2, t=6$ and $t=7$.
(vi) Calculate the distance fallen from $t=2$ to $t=7$ according to this model.

